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The United States recently announced ambitious plans for extended human and robotic 
exploration of the moon and mars. Coupled with efforts to complete the International Space 
Station, clearly mankind is destined to deploy increasingly more complex manned systems 
and for longer periods of time in Space. These systems, however, require fault-tolerant and 
highly adaptive real-time computer systems to control them. Fortunately, new technologies 
such as the field programmable gate array (FPGA) offer a flexible platform to develop 
robust, adaptable, self-repairing systems for space. But this new technology is itself 
vulnerable and therefore must be used with caution by augmenting existing practices with 
new techniques. The contribution of this paper is an overview and synthesis of recent 
developments in FPGA-based reconfigurable real-time system, and a discussion of 
reconfiguration issues in space applications. From these a system formalization, a proposed 
set of architectural and operating systems requirements, and suggestions for future work for 
FPGA-based self-repairing space systems are given.  

I. � Introduction 
ESIGN of robust, fault-tolerant computer systems for space vehicles is considerably more difficult than for 
terrestrial ones because of the adverse operating conditions in space. These conditions are created by dramatic 

temperature variations, shock, vibration, electromagnetic interference, and transient failures induced by random 
collisions with charged particles. These rogue particles and the failures induced by them, called single event upsets 
(SEUs), produce effects that are similar to other kinds of transient noise, and can be either temporary or permanent. 
To deal with these challenges, NASA is increasingly relying on adaptable systems based on the field programmable 
gate array (FPGA).1 

This paper considers the computing requirements of systems that can survive in space. The organization of this 
paper is as follows. First, a review of related work with respect to self-repairing systems, single event upsets, and 
reconfigurable architectures is presented. Next a discussion of the adverse effects of single event upsets (SEU) is 
given. Following is a brief discussion of the field-programmable gate array, though it is assumed that the reader 
already has familiarity with them. Next a review of certain experiences in fault-tolerant design for space missions is 
presented. Then, in this context, a set of high level hardware and software requirements for a fault-tolerant 
architecture for space applications is given. Finally, conclusions and suggested future work are offered. It should be 
noted that there are many good survey papers covering general fault-tolerant computing schemes, for example, Refs. 
2 and 3. But the purpose of the present paper is to focus on the relatively narrow sub-specialty of self-repairing 
systems for space applications based on the FPGA. 

II. � Related and Previous Work 
Self-repairing systems have long been sought for space applications by NASA and other space agencies. In fact, 

the notion of self-repair precedes the ambitions of space flight and is apparently due to Forbes and Stieglitz in the 
design of early computers. von Neumann, however, is attributed with proposing hardware triple redundancy, used 
particularly by NASA and in other mission critical applications for fault-tolerance.4 
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Much of the subsequent work in repairable computer systems has focused on detection and repair of discrete 
circuits. For example, Roth introduced two schemas for automatic detection, diagnosis and repair of failures in 
complex parallel computers. In the first schema, repair is done by deleting a processor in which a failure has been 
detected. In the second schema, individual devices are replaced with general purpose spares in a “PLA 
[programmable logic array] rendition of a regular design.” Detection and diagnosis is done using the D algorithm, a 
hardware based approach for diagnosing stuck-at failures.4 In short, this strategy involves fault identification and 
hot-swapping of spares. 

For protection of the CPU, in particular, Dolev and Haviv introduced several self-stabilization algorithms that 
can handle soft errors (including SEU).5 In their approach, they use an abstraction of the state transition graph to 
guarantee that any microprogram will not enter any dead states. If it does, the microprogram can be redesigned until 
all sequences can be shown to eventually converge to a fetch-decode-execute cycle upon experiencing a fault. Hence 
it can be used to insure that no microprogram can “hang-up” if affected by an SEU. Their approach can easily be 
adapted to FPGA configured microprocessors as well as any other device, such as A/D converters, executing a 
microcode program. 

Laplante described the mechanisms used to protect the Space Shuttle Inertial Measurement Unit (IMU) from 
faults due to single event upsets. These strategies included hardware mechanisms such as error detecting and 
correcting codes, redundant hardware, and algorithm robustness. He also described software techniques for detecting 
spurious and missed interrupts due to SEU and for dealing with them once detected.6 

Musliner et al. provided a framework for self-adaptive systems in hard real-time environments, which consists of 
five elements. The first is a subsystem that predictably executes real-time control plans. The second is a state-space 
planner and scheduler that use the system models to maintain a system “safe state.” The third element is an adaptive 
mission planner that uses a reasoning engine to formulate long-range reconfiguration sets, absent failures. The fourth 
is a performance evaluator that tries to detect impending system failures and find run time efficiencies. Finally, an 
evaluator generator, dynamically adapts the performance evaluator. The last three elements, which are the unique 
contributions of this work, provide built-in model checking to optimize the task application set for a given mission 
phase.7 This work is essential in the adaptive nature of the proposed system in that it provides a basis for 
establishing that dynamically reconfigurable task sets are possible, as well as providing a baseline onto which the 
fault-tolerant SEU mechanisms can be added. 

In related work Walder and Platzner successfully built a prototype that dynamically loaded an existing set of 
networking and multimedia tasks including Advanced Encryption Standard (AES) decryption and audio stream 
decoding in an FPGA.8 Their design incorporated a multitasking system functioning on relocatable hardware, and 
used a memory management unit to translate task requests to internal and external memory accesses. Device drivers 
and triggers where used to connect to external I/O. They also implemented a prototype using Xilinx technology. 

Simmler et al. investigated “pseudo multitasking” in FPGA systems and showed how to share hardware 
resources among several tasks. This technique is similar to the multitasking on a single CPU supported by an 
operating system. In particular, they presented a way to enable task switching using an application independent 
technique to context switch using a bit stream. They also gave the requirements necessary for robust context saving 
and restoring for an FPGA coprocessor. Finally, an FPGA coprocessor implementation designed especially to 
support multitasking was described.9 

Nollett et al. provided a theoretical framework for transparent complex hierarchical reconfiguration of an FPGA 
system.10,11 They approach the problem of runtime reconfiguration by partitioning the FPGA into two tiles each 
acting as independently managed, run-time reconfigurable, soft computing resource. Hence, while operations are 
being conducted using the hardware resources on one of the tiles, reconfiguration can occur in the other. 
Communications between the tiles is conducted via a packet switched interconnection network. The authors note 
that one of the disadvantages of this approach, however, is the possibility of internal fragmentation of the FPGA 
space. 

Burns et al. proposed the use of, in effect, an overlay manager using a virtual hardware manager, a 
transformation manager, a system configuration manager, and a device driver to hide the programming interface in 
an FPGA.12 They proposed that the reconfiguration system for an FPGA architecture must provide the following:  

 
1) The ability to reserve a chunk of FPGA resource.  
2) The ability to transform a circuit, that is, to change its orientation or translate its position. 
3) A rich high level symbolic representation for circuits that is suitable for transforming the representation 

into device specific programming data. 
4) An architecturally correct representation of the FPGA device to support core algorithmic operations.12 

 



LAPLANTE 

 156 

More recently, Coyle et al. surveyed current research in self-repair of embedded systems, but specifically 
focused on non-real-time systems. They suggest that there are two kinds of self-repairing systems; those that provide 
attributive repair, which attempt to restore the attributes of the systems to some initial state, and those that provide 
functional repair, which attempt to restore the original functionality of the system. Their contribution also includes a 
UML model of some basic repair protocols, and a case study using a speech recognition system.13 

Wigley and Kearney developed a self-repairing FPGA system using Java. They also characterized the basic 
services that should be provided by an operating system for reconfigurable computing: resource allocation, resource 
partitioning, application placement, and routing.14 They introduced a suitable application loader and scheduler and 
suggested the need for an appropriate abstraction layer between the operating system and the application hardware. 
Finally, they offered performance metrics for the operating system. These were,  

 
1) Execution time overhead introduced by the operating system itself. 
2) Reduction in application specific performance induced by operating systems interference. 
3) Fragmentation of the FPGA device as well as traditional operating systems fragmentation metrics. 
4) Ease of application porting. 
5) Ease of platform porting.  

 
They also built a proof-of-concept prototype using a Celoxica FPGA board and using Java as the language for 

their operating system. 
On the “pure” operating systems side, Mosse et al. examine the theoretical issues of missing deadlines in 

periodic, preemptive scheduled systems, due to SEUs and other transient faults. In particular, they present three 
algorithms that can tolerate a single missed task – a dynamic programming optimal solution, a near-optimal linear 
time heuristic, and a queue based solution.15 However, missing a task is only one consequence of single event upsets. 

Finally, the Adaptive Instrument Module (AIM), which resided in the Australian Fedsat 1 spacecraft, became the 
first space borne reconfigurable processor in 2002 (Ref. 16). Subsequently, a group at NASA/Johns Hopkins 
realized a prototype reconfigurable processing platform, Adaptive Data Analysis and Processing Technology 
(ADAPT), for development of adaptive functionality for space missions.17 

Collectively, these and other related works provide a strong basis from which a set of design principles for self-
repairing computers in space environments might be extracted. 

III. The Threat of Single Event Upsets 
Single event upsets occur in space systems when protons and heavy ions due to cosmic rays, solar flares, and 

passage through the van Allen belt cause a change to the state of some bi-stable device. Similar effects may also be 
seen in the wake of terrestrial nuclear events. Single event upsets can permanently damage a device through latch 
up, burnout, or gate rupture. SEUs may disrupt device operation for a few cycles, or for a single access only. In any 
case the effects of SEUs can hinder the correct operation of digital devices, presenting significant problems of 
reliable control.  

The effects of SEUs include alteration of program memory, corruption of RAM or of a CPU register, and 
spurious or missed interrupts. These effects may cause negligible, minor, or catastrophic injury to the system, 
depending on when and where the bit is altered. Single event effects can also be seen in I/O circuitry, causing false 
or corrupted data to be input or output. As devices such as interrupt controllers, bus multiplexers, A/D converters 
and so forth contain registers and on-board RAM, they too are subject to SEU, though the small amount of on-board 
memory greatly reduces the likelihood of occurrence over short periods of time. A sampling of digital computer 
components and the deleterious effects of experiencing an upset are summarized in Table 1. 

Devices have varying susceptibilities to upset based on part geometry, logic levels, and manufacturing process. 
The upset rates are not inconsiderable – rates of >3 upsets per million bits per day are not uncommon for certain 
SRAMs.18 

Device manufacturers can harden parts by exposure to low level radiation to liberate any radioactive impurities 
that could create offending particles. However, this treatment diminishes the part's low-level radiation longevity, and 
does not eliminate the possibility of SEU altogether. Moreover, hardened parts are difficult to obtain. Shielding can 
be used to protect parts from SEU, but this again only lowers the upset rate, and the extra weight and volume of the 
shielding is a high price to pay. Therefore, for long duration missions (e.g. one or more years), where the risk of 
upsets increases linearly over time, the effects cannot be ignored. The most effective solutions, however, involve a 
combination of hardened parts and hardware of hardware and software fault-tolerance mechanisms.19 

 



LAPLANTE 

 157 

 
Table 1 Potential adverse effects of device failure due to single event upset or other transient failure 

 
Device  Possible Adverse Effects  
clocks • false pulses 

• missed pulses 

FPGA • any effect possible depending on how device is 
configured 

I/O circuitry   • bad data 
• missing data 

interrupt controller  
 

• spurious interrupts  
• missed interrupts   
• misprioritized interrupts 

memory • program corruption 
• data corruption 

microprocessor 
other microprogrammed devices 

• device hang-up 
• program misexecution 

program counter  
 

• jump program  
• mis-execute instruction  
• bad operand  
• latch-up  

 
A variety of techniques employing hardware, software, or both have been developed to enable detection and 

recovery from an SEU. These schemes include use of error detection and correction chips, RAM scrubbing, coding, 
and robust algorithm design. A unique set of these and other techniques were developed for use on the Space Shuttle 
Inertial Measurement IMU computer and will be described later. But the capabilities of the FPGA suggest additional 
strategies for dealing with the SEU. 

IV. � Field Programmable Gate Arrays 
Systems based on field programmable gate array (FPGA) technology are quickly replacing those based on 

application specific integrated circuits (ASIC). Field programmable gate arrays embody hundreds of thousands of 
reconfigurable gates per device that can be integrated to form system level solutions. SRAM based FPGAs are 
reprogrammable (even within the system) allowing rapid reconfiguration. Reconfiguration involves resetting the 
flexible hardware architecture into a new configuration. A formalized definition of reconfiguration is given in 
section 6.2.4.  

Most FPGAs can be fully or partially reprogrammed, allowing for reconfiguration of selected areas of the device 
and leaving other areas intact. In space applications, in particular, the high densities and in-situ reprogrammability of 
SRAM based FPGAs are ideal.  

The FPGA is not, however, without its disadvantages for use in high performance space applications. The time 
required to configure a device is not negligible, for example in the ADAPT system, approximately 1 second (Ref. 
17). Moreover, the maximum FPGA device speed still lags behind that of ASICS and other silicon solutions. FPGA 
power consumption is also higher than that of similarly configured ASIC devices.20 

Perhaps more importantly, a major challenge to FPGAs in space applications is their enhanced susceptibility to 
single event upsets. SRAM based FPGAs, particularly, are volatile devices and therefore are highly susceptible to 
single event upsets, even if they are radiation hardened.†21 FPGAs are designed to be reconfigured and, unlike fixed 
devices, unused paths between components are left in place. These paths can then be energized through the long 
term effects of total ionizing radiation doses or by single event effects (collisions with charged particles In short, the 
strength of the FPGA, its easy reconfigurability, also is the source of its weaknesses. Still, the power of the FPGA is 
sufficiently great, that its weaknesses must be overcome.  
 

                                                             
†One NASA presentation jokingly notes that radiation hardened FPGAs are used as particle detectors.19 
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To cope with the SEU problem, FPGA manufacturers provide specific functionality. Xilinx, for example, 
provides an interface to its Virtex II series of FPGAs that confers special post-configuration operations for SEU 
mitigation. These operations allow for SEU detection and repair or reconfiguration of selected portions of the FPGA 
during continuing operation. In addition, a kind of RAM scrubbing operation is supported in which a particular logic 
block can be reloaded.22 Here, by selectively scrubbing portions of the FPGA, severe SEU effects can be avoided. 

V. � Lessons Learned From Other Space Missions 
The requirements for self-repairing systems go beyond mitigation of SEUs, because as noted, space missions are 

susceptible to other kinds of hazards, exacerbated by the remote and autonomous nature of the vehicles. To illustrate 
these hazards, consider three very different space missions. The first reviews the SEU protection mechanisms used 
in the Space Shuttle Inertial Measurement unit (IMU) control system. The second two cases describe software 
failures in recent Mars missions that, while unrelated to SEUs, highlight additional design challenges for the 
designer of space borne systems. The mention of these two systems further highlights a related constraint – NASA 
has mandated the use of off-the-shelf software where possible. In the two latter cases, shortcomings in the off-the-
shelf software led to the system failures. In at least the latter case, the survivable FPGA based system might have 
overcome the weakness in the commercial software used.  

A. Space Shuttle IMU Fault-Tolerant Design 1984 
In the Space Shuttle IMU several strategies are used during system start up, in foreground processing, and in 

background processing to enhance fault-tolerance to SEUs and other transient hardware failures. Central to these 
strategies is the use of an error detection and correction chip (EDAC) based on a Hamming code. Using six 
syndrome bits to protect each 16-bit word, the device can detect and correct all single bit errors on the bus. It can 
also detect all 2-bit errors (and correct some) and even some 3-bit errors. Chips that use Reed-Solomon block coding 
can detect and correct multiple bit errors, but with more significant power and storage overhead. Software 
implementations of Reed-Solomon codes can also be used, but with significant processing overhead.18 

The Hamming based EDAC chip does not correct errors in memory; they are corrected on the bus as they are 
fetched. Thus, in order to permanently correct the error in memory, the information, and the correct syndrome, is 
written back. This process is known as RAM scrubbing.  

During system start up several tests are run as part of the built-in software test () suite. For example, a checksum 
is stored with the ROM based executable program and is recomputed to check for errors. The RAM area of memory 
is fully tested by writing and reading back, several patterns of bits into each cell. Then, the error detection and 
correction chip is fully tested. Finally, start up BIST of all system hardware is performed and the interrupt cycle 
structure and variables are initialized. 

In each of the five periodic threads the associated interrupt signal needs to be validated before being serviced in 
order to avoid processing false interrupts. Accordingly, a redundant command (either a CPU readable discrete signal 
or memory-mapped input) is generated along with each interrupt request by the interrupting source. Each interrupt 
handler then checks the corresponding redundant signal when responding to an interrupt. If the interrupt is spurious, 
control can quickly be returned to the interrupted thread. Extra run time stack storage was provided to allow for such 
an occurrence. Similarly, any induced state where the interrupt controller cannot honor interrupts must be avoided. 
This is accomplished by continually refreshing the interrupt mask register and by continually re-enabling interrupts.  

Missed interrupts are another potential SEU induced problem, which can be mitigated several ways such as by 
using faster rate threads to count the necessary interrupts in lower rate threads. In any case, the software design must 
be such that missing an occasional interrupt will not seriously compromise system performance. 

SEUs can also cause the interrupt controller to incorrectly prioritize interrupts. Here the problem is solved by 
continually saving a copy of the previous interrupt status register in RAM. When an interrupt is serviced, the current 
contents of the status register are compared to the previous contents, which should always be lower. Any anomalies 
can be detected, and erroneous processing avoided. Finally, a foreground process monitors the “error detected” flag 
from the EDAC chip, and a count is kept and saved for post flight analysis. 

While executing in background, several operations are performed to help minimize the potential effects of an 
SEU. First, as in initialization, a ROM checksum is computed to detect any damage to the program area of memory. 
RAM scrubbing is also performed, which protects against the small possibility that two SEUs occur in the same cell 
over the life of a mission -- an error which cannot always be corrected by the EDAC circuitry.6 
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B. Mars Pathfinder Rover Vehicle 1997 
A notorious software failure occurred in a NASA unmanned space vehicle in 1997. The case involved the Mars 

Pathfinder Space mission’s Sojourner rover vehicle, which was used to explore the surface of Mars. In this incident 
the MIL-STD-1553B information bus manager was synchronized with mutexes. Accordingly, a meteorological data 
gathering task that was of low priority and low frequency blocked a communications task that was of higher priority 
and higher frequency. This infrequent scenario caused the system to reset – a watchdog timer, designed specifically 
to protect against this kind of deadlock, overflowed causing the general system reset interrupt to be issued.23 

The problem, however, would have been avoided if the priority inheritance mechanism provided by the 
commercial real-time operating system had been used. But it had been disabled. Fortunately, the problem was 
diagnosed in ground based testing and remotely corrected by re-enabling the priority inheritance mechanism.24 

C. Mars Spirit Rover Vehicle 2004 
A second high profile failure occurred in 2004, once again involving a Mars rover vehicle (named Spirit). This 

vehicle ran a special version of the popular VxWorks real-time operating system on a radiation hardened RAD6000 
processor. In this case, communications with the rover was lost for several days while it was on the surface of Mars.  

The cause of failure was file clutter in the on board flash memory. This, in turn, reduced the space available for 
the operating system, which had a very large footprint of 32 megabytes‡, so that it could not load. The resultant fault 
triggered a system reset, but upon resetting, the operating system again failed due to insufficient flash memory. This 
scenario repeated until the batteries were drained sufficiently to trigger a “safe mode.” Fortunately, the safe mode 
reboot loaded a subset of the operating system, which was able to load, run, and eventually allow command signals 
to be sent to the rover to clean up the file system, finally allowing a full operating system reboot.25 

This very unfortunate situation might have been avoided in a self-repairing operating system if it had been able 
to recognize that certain files stored in flash memory were relatively unimportant, at least with respect to loading the 
full operating system. 

The two Mars rover failures illustrate some of the difficulties in reliable control of space vehicles and highlight 
the need for robust, self-reparable systems. The self-repair aspect is crucial because, while in each case the situation 
that caused the failure was remedied, it would not have turned out so well had the vehicle been manned – the 
numerous systems resets that eventually resolved the problem might not have been possible. A more sophisticated 
solution would have involved system recovery without shutdown of any kind. 

VI. � Requirements for a Fault-Tolerant, Self-Repairing Architecture 
Based on the peculiar environment of space, the characteristics of one main threat to the system (SEUs), the 

nature of FPGAs, and the lessons learned from past space missions, requirements for a fault-tolerant, self-repairing 
architecture are now given. These are organized as SEU protection mechanisms, a self-repairing hardware 
architecture, and operating systems requirements. The operating systems requirements encompass traditional 
requirements for embedded, hard, mission critical systems with the addition of special considerations due to the 
reconfigurable hardware. 

A. SEU Protection mechanisms 
Clearly radiation hardened devices and shielding should be used whenever possible in fault-tolerant design of 

space systems. But in addition, the mechanisms adopted in the Space Shuttle IMU, which were reviewed in section 
5.1, provide a suitable baseline for protecting any space borne system, but not without costs.  

For example, all random access and read only memory are protected by bus-corrected error detection and 
correction. This process detects and corrects the mostly likely SEU induced errors on the bus, but at the expense of 
slightly increased memory access times. In the case of the random access memory, scrubbing can be used to correct 
any errors detected in random access memory, which costs additional processor time. CPU latch up can be detected 
through a watch dog timer feature. But the costs for this protection are negligible increases in processor utilization 
and in power, board area, and weight due to the timer device. Self-stabilizing design using Dolev and Haviv’s 
approach can be used to ensure that no FPGA based microprocessor or microprogrammed device will enter a death 
spiral.5 Finally, spurious interrupts, missed interrupts, and mis-prioritized interrupts are handled through the use of 
redundant signaling but the cost for these redundancies is additional processing time, which though small, occurs 
during interrupt service routines and while interrupts are disabled, and therefore are non-negligible. 

                                                             
‡ The real-time operating system for the Space Shuttle Inertial Measurement Unit required less than 64 kilobytes of memory. 
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The baseline SEU protection mechanisms for space borne FPGA systems and the costs of implementation just 
described are summarized in Table 2.  
 

Table 2 SEU protection mechanisms and their cost (those marked with a “*” are negligible) 
 

Adverse Effect Remedy Cost 
corruption of RAM data          
                     

• EDAC chip  
• RAM scrubbing  

• increased memory access times 
• increased processor utilization   

 •  •  
corruption of ROM data          • EDAC chip 

• CRC checksum      
• increased memory access times 
• none 

 •  •  
corruption of PC             • none         • none 
 •  •  
CPU latch-up               • watchdog timer    • increased power, board area, 

weight* 
 •  •  
I/O circuitry              • none         • none 
 •  •  
spurious interrupts           • confirmation flags   • increased interrupt response 

times  
 •  •  

missed interrupts            
                     

• watchdog timer  
• counters    

• increased power, board, weight*  
• none 

 •  •  
misprioritized interrupts       • redundant status register 

check 
• increased interrupt response 

times*  
 •  •  
hang-up of microprocessor or 
other microprogrammed devices 

• self-stabilization • none (design time costs only) 

 
It is noteworthy that in the Space Shuttle IMU system that the I/O circuitry and program counter did not have 

any explicit protection, largely because of the unavailability of a suitable hardware solution at the time. Implicit 
protection could have been provided through robust algorithm design. However, even such techniques as Kalman 
filtering or the rejection of statistically outlying inputs, for example, would eventually degrade if the I/O device was 
permanently damage. It is here that the reconfigurability of the FPGA can be used to enhance fault-tolerance. 

B. Self-Repairing Space Systems Architecture 
Fault-tolerant systems for space applications require more than SEU protection; they must be able to adapt to 

changing mission requirements and respond to system threats. The failures of the two Mars rover vehicles highlight 
the need for an adaptive fault-tolerant architecture that does not rely on resets to deal with hazardous situations.  

Traditional real-time operating systems can provide a measure of reconfigurability by rearranging the task set. 
But FPGA-based systems can provide more flexibility through hardware reconfiguration.22 Hence, while the Mars 
Pathfinder rover problem was solved by an operating systems adjustment, the Mars Spirit rover, which required 
more memory to avoid resetting, might have been able to obtain that memory in a reconfigurable system.  
 
1. Hardware architecture 

According to Wigley and Kearney a reconfigurable system must provide resource allocation, resource 
partitioning, application placement, and routing.26 In the proposed architecture, these functionalities are provided by 
a FPGA subsystem, which reconfigures the hardware and software from an archive in response to mission events. 
The hardware subsystems are configured and the appropriate programs are loaded into the hardware subsystem by 
commands generated by hardwired logic embedded in the FPGA subsystem. The FPGA chip within the subsystem 
can be viewed as one or more regions of interest, which contain modules that are configured as appropriate devices 
or memory stores  
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The basic unit of reconfiguration is a module. A module contains one or more bitstreams that can configure a 
particular region of interest of the FPGA into devices. In terrestrial FPGA applications a non-volatile device such as 
flash memory contains the configuration bitstream for each device. Upon startup, a boot strap loader configures the 
volatile FPGA from the non-volatile store.  

In the proposed architecture, a similar strategy is used. A radiation hardened, hard-wired boot strap loader loads 
modules from an archive in the secondary store. The archive contains both device configuration bitstreams and 
programs in executable form for the operating system and applications programs. To conserve board space and 
power, the contents of the archive are stored in a compressed form using a lossless compression scheme such as 
LZ77, which has been successfully employed in terrestrial FPGA applications.27 Therefore, a decompressor works in 
conjunction with the boot strap loader (Fig. 1).  

 
Fig. 1 High level view of the FPGA subsystem.  

 
The archive is radiation hardened memory and protected with extra bits for an error detection and correction 

scheme such as the Hamming or Reed-Solomon codes.  
A mission mapper, which is also a radiation hardened combinational logic circuit, is responsible for driving the 

reconfiguration of the system hardware and software based on various systems parameters. 
 
Consider the following formalization of this architecture. Let R  be the set of modules stored in the archive, 
where { }1 2

, ,...,
k

R R R R=  (see note§). The compressed configuration bitstreams for all modules are denoted 

1 2
, ,...,

k
R R R! ! ! . One of these modules, 

c
R , contains the bitstream configuration description of a soft processor. 

Others contain bitstream descriptions of I/O devices, memory management unit, interrupt controller, etc. Memory 
storage is configured in modules 

1 2
, ,...,

l
m m m
R R R , with l k< . For convenience of notation we denote the 

memory modules 
1 21 2

, ,...,
l

m m m l
R M R M R M! ! ! . For fault-tolerance it is highly desirable to separate 

operating system and application memory blocks and even blocks of memory between applications to prevent 
unprotected access. 
 
As an example, consider a system consisting of the set of modules, R, depicted in Table  3. 
 
 
 
 
 
 

                                                             
§ Except in the case where individual signals are involved, we use upper case letters with subscripts to denote the elements of this 
set and like sets because the elements themselves are sets. 
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Table 3 Partial set of modules for a reconfigurable space system. 
 

 
Modules Device Memory 

provided 
R1 =Rc CPU NA 
R2 MMU NA 
R3 Bus Mux NA 
R4 A/D converter NA 
R5=M1 Memory block 1 8KB 
R6=M2 Memory block 2 8KB 
R7=M3 Memory block 3 16KB 
R8=M4 Memory block 4 16KB 
R9=M5 Memory block 5 16KB 
R10=M6 Memory block 6 32KB 
R11 Special purpose device 1 NA 
R12 Special purpose device 2 NA 
R13 Special purpose device 3 NA 
R14 Special purpose device 4 NA 

 
Table 3 is incomplete in that there are numerous other devices that might need to be configured, such as interrupt 

controllers, timers, and so on. But Table  3 is provided as a simplified example to be described later. 
 

2. Fault-tolerant bus architecture 
In addition to protecting data in all bistable devices, data must also be protected as it moves through the system. 

Therefore, all internal and external busses employ a fault-tolerant bus architecture. It has been shown that an error 
detection system based on detecting invalid Manchester encoded data (a parity error) and then retransmittal is an 
effective scheme for EDAC on the bus.18 If a reverse retransmission request channel (Fig. 2) is used for 
retransmission of any data that has been corrupted on the bus, then it will not place an undue burden on the more 
frequently used forward channel.28 

 
Fig. 2 (a) One direction of a fault-tolerant bus connection. (b) Detail showing coding system and a reverse 
retransmission request channel.28 (Q3) 
 

Another strategy that has been used for SEU tolerance involves optical busses. The SEDS MIL-STD-1773 fiber 
optic bus is a commercially available, SEU invulnerable bus based on optical transmitters and receivers. Such an 
approach has been used successfully in space.18  

Depending on cost and other architectural considerations, either technique can be used to provide a robust, 
noiseless bus structure for communicating with all devices in the fault-tolerant systems. 
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3. Program storage 
 It is helpful to formalize some aspects of program storage in the archive. Let { }1

,...,
t

P P P= , be the set of all 

program code in uncompressed form. The set { }1
,...,

t
P P P! ! !=  holds the compressed program files). Since the 

program code is divided into various operating systems and applications program code units, for convenience, we 
use mnemonics to represent the Pi. That is, suppose that the mnemonics OSy, and APPx represent the operating 
systems code and applications programs code respectively, then we have P1=OS1, P2=OS2,…,Pn=OSn,Pn+1=APP1,… 
and so forth. To illustrate, consider the partial program set, P, depicted in Table  4. 
 

Table 4 Partial set of programs for a reconfigurable space system. 
 

Program Mnemonic Description 
P1 OS1 Operating system code segment 1  
P2 OS2 Operating system code segment 2  
P3 APP1 Navigation 
P4 APP2 Telecommunications 
P5 APP3 Self-diagnostic 
P6 APP4 Calibration 
P7 APP5 Non-critical application 1 
P8 APP6 Non-critical application 2 

 
 

 

If program 
i
P  resides in memory block j

M it is denoted i j
P M> . If the operator  denotes the size of, in 

bytes, of the operand (which can be either the size of a program Pi or the capacity of memory Mj), then clearly we 

must have i j
P M! . This property can be used by the operating system during reconfiguration to determine if a 

program can fit into available memory, much as a traditional operating system would do page-frame fitting.  
 

4. Reconfiguration capability 
Based on the state of the system (including any known system damage) and the current mission phase, the 

mission mapper selects, decompresses, and loads the correct set of modules to be configured in the appropriate 
regions of the FPGA. Subsequently, the correct program set is selected, decompressed, and loaded into the memory 
modules that have been previously configured. 

 
Suppose the status set { }1 2

, ,...,
v

S s s s=  represent discrete signals from various devices or fault signals that 
can be set under program control by the various BIST programs. Then the mission mapper is a triple 

{ }, ,R P S=M , which maps the current configuration and programs into a new one based on the status set. That is 

 
 M: R × R × S → R × P 
 

As an illustration, consider an initial system configuration consisting of a soft processor, memory management 
unit, memory to hold the operating system, memory to hold the program and data for application configuration “A”, 
I/O devices, and scratchpad memory. Then the appropriate memory modules APPA1, APPA2, etc. would be loaded 
into the application memory store. A portion of the available FPGA may be unused and is left as spare for 
reconfiguration if needed (Fig. 3). 
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Fig. 3 Mission configuration “A” showing the regions of interest configured as devices based on the 
appropriate set of modules. The spare region is not configured. 
 

Now suppose a new application set, configuration B containing code modules APPB1, APPB2, etc. is loaded. Such 
a reconfiguration due to a mission phase change (e.g. from launch to orbit) might be as shown in Fig. 4. 

 

 
Fig. 4 Mission configuration “B.” 

 
The mission mapper can be implemented as a state machine. For example, consider the set of systems modules 

in Table  3, the set of programs in Table 4, and a set of mission phases corresponding to; calibration, diagnostic, pre-
launch, launch, orbit, reentry, landing, and survival phases. In this case, the status set, S (omitting fault signals) 
represents the set of mission phases (calibration, diagnostic, and so forth). A corresponding mission mapper state 
machine in tabular form might appear as in Table 5. 
 

Table 5 Partial mission mapper table (state machine) for a reconfigurable space system. 
 

Modules Programs Memory Blocks Mission/ 
Status Set R1 R2 R3 R4 R5 R6 R7 R8 P1 P2 P3 P4 P5 P6 P7 P8 M1 M2 M4 M5 M6 
Calibration ■ ■ ■ ■ ■   ■ ■    ■ ■  ■  ■ ■ ■ ■ 
Diagnostic ■ ■ ■ ■  ■   ■ ■ ■ ■ ■ ■ ■  ■   ■ ■ 
Pre-launch ■ ■ ■ ■  ■ ■  ■ ■ ■ ■ ■ ■  ■    ■ ■ 
Launch ■ ■ ■ ■  ■ ■ ■ ■ ■ ■ ■ ■ ■ ■  ■  ■ ■ ■ 
Orbit ■ ■ ■ ■  ■   ■ ■ ■ ■ ■ ■  ■ ■ ■ ■ ■ ■ 
Reentry ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■  ■  ■ ■ ■ ■ 
Land ■ ■ ■ ■   ■  ■ ■ ■ ■ ■ ■ ■ ■  ■  ■ ■ 
Survive ■ ■ ■ ■     ■  ■ ■        ■ ■ 

 
 

5. Reasoning system 
The reasoning component of the mission mapper manages the configuration of all or part of the FPGA and must 

deal with a number of issues. This reasoning system is triggered by any change in the status set, either by an external 
command for change in mission phase or by an internal fault signal generated by the software built-in test.  
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 First, the reasoning system must determine the correct set of hardware modules to be configured (via a hard 
wired finite state machine as in Table 5). Next, it must decompress and configure these components in the FPGA. 

The mission mapper configures hardware modules in order of precedence so that the most important devices are 
configured first, followed by memory modules, which are configured as space permits. If sufficient configurable 
FPGA space is not available for either the requisite devices or minimal memory, then the mapper must attempt to 
load the survivability configuration. If this can not be loaded, then there will be a total systems failure. In this case a 
full reboot may be the only hope of reconstituting the system. 

Suppose that Si is an instance of the status vector, S, Rj(i) the jth hardware module and Mk(i) the kth memory 
module associated with Si. Then the operation of the reasoning system can be illustrated by the following pseudo-
code. 
 
if state S changes then 
 for all Rj(i) in Si.      // configure HW modules 

if Rj(i) fits in available FPGA space  
configure Rj(i) 

else 
 load survival configuration 

for all Mj(i) in Si.      // configure memory 
if Mj(i) fits in available FPGA space  

configure Mj(i) 
else 
 if minimum memory not configured 
  load survival configuration 
 

Accordingly, the mission mapper circuit would be driven by signals designating the mission mode, hardware or 
software induced faults, and configure the hardware and software as determined by the logic of the table. 

C. Enhanced Fault-Tolerant Services Promoted by Reconfigurability 
At a minimum, a real-time control system for space applications should be able to tolerate both single event 

upsets and other kinds of transient failures using the redundant command mechanisms previously described. 
However, there are other protection mechanisms and synergies afforded by the FPGA that the operating system 
should exploit.  
1. Basic software requirements 

Certain software protection mechanisms should be employed to avoid unsafe states through interrupt controller 
protection, memory protection, and so on. Little research exists in this regard. However, several existing techniques 
might be adapted for this setting. For example, a modified Banker’s algorithm could be used to detect when 
resources, such as memory, are becoming unavailable and will then cause the mission mapper to reconfigure the 
system accordingly. Such an approach might have proved successful in the Mars Spirit rover. 

Another approach might use on-line model checking or software black boxes to collect execution time data that 
might indicate the need for reconfiguration. Nollett et al have already demonstrated the proof of concept for 
transparent complex hierarchical reconfiguration of a system for the FPGA.10,11 Musliner et al. had proposed the 
adaptive mission planner and built-in model checker to ensure safe state behavior.7 

 
2. Determining when SEU errors occur and dealing with them 

Built in software testing can determine if an SEU has occurred and suggest an appropriate reconfiguration. For 
example, in an I/O device, it may be reasoned to be damaged if it outputs exhibit certain statistical properties, or if 
the device itself indicates a stuck-at or other persistent failure. In this case the I/O device is a candidate for 
reconfiguration.  

In another case, if the BIST determines that the interrupt controller is latched up, or if spurious or missed 
interrupts are determined to be occurring too frequently, the interrupt controller may be reconfigured. 

Finally, if the EDAC chip is issuing too many illegal instructions faults are issued by the processor, it might be 
likely that either the program counter or processor itself has been damaged, therefore, the processor might be 
reconfigured.  

In any of these situation the operating system would throw an exception, set a particular bit in the status set S, 
and trigger an appropriate reconfiguration (Fig. 5) and as described in section 6.2.5.  
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Fig. 5 A repaired configuration showing the soft processor remapped to another partition in the FPGA. 

 
Other processors on board the system would need to take over essential functioning during the reconfiguration 

period. This would require extensive cooperation between operating systems amongst all of the system’s processing 
subsystems, and is an area of open research. 

Such system configuration might be realized as an orthogonal and parallel architecture employing three or more 
FPGAs attached to a common, but segmentable bus. In such a configuration one or more of the devices could take 
turns running different portions of the mission code while a “mission idle” FPGA could be designated the 
“surveyor”. It would be loaded with code that would allow it to check the configuration of the other devices while 
they were running. The surveyor device could also load a test configuration into an idle device and then provide it 
with test inputs to check the completed functionality of the device and note failed configurable logic blocks or other 
components of the device. Such potential failures could be rechecked by another device before being permanently 
marked bad in the configuration store. Devices which were found to have completely failed could be isolated from 
the bus. Surveyor functionality would rotate between devices allowing a full periodic system check of the FPGAs 
and possibly their attached peripherals. 

 
3. Survival mode 

If so much of the FPGA is destroyed that a complete system cannot be configured, then if possible, a “survival 
mode” needs to be realized. Such a mode might allow for the support of some minimal set of hardware, operating 
system kernel, and applications software for one or more critical applications (e.g. life support, navigation, and 
communication), which might be sufficient to ensure the safe return of the vehicle and crew (figures 6 and 7). 

 
Fig. 6 A damaged system in which only the basic hardware system is configured.  

 
This survival version provides only minimal functionality sufficient to load the survival mode operating system 

and applications. 
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Fig. 7 The space of program code P showing two possible application configurations, operating system, 
essential operating system code, and survival mode system code.  
 

Finally, in the case when the undamaged FPGA is insufficient to load the survival mode hardware then the 
system will have failed. In this case fault-tolerance would need to be provided by system duplication or through 
systems that could be reconfigured to replace the damaged system. 

D. Real-Time Operating System Requirements 
The operating systems requirements for FPGA based systems incorporate both traditional services and enhanced 

fault-tolerant services enabled by the hardware reconfigurability. A typical real-time operating system needs to 
provide a robust task scheduling and dispatching capability, intertask communications and synchronization 
mechanisms, and support for embedded devices. For hard real-time applications, the operating system must also 
provide predictable and bounded response times. 

There are three strategies for providing real-time operating systems for FPGAs: 
1) Build the operating system to run directly on the hardware (e.g. RealFast Corporation’s Sierra 16® 
hardwired operating system for Xilinx devices) 
2) Build the operating system to run on a soft processor (e.g. Xilinx’s XMK® native operating system that 
runs on their MicroBlaze® soft processor). 
3) Port a non-FPGA real-time operating system to run on an FPGA soft processor (e.g. Wind River Systems’ 
VXWorks®, QNX’s Neutrino OS®, Express Logic’s ThreadX®, and Micrium’s µ C/OS-II®). 
Hardwired operating systems are the fastest but are generally the least flexible, and hence, adaptable. 

Commercial real-time operating systems that have been built for non-FPGA environments are feature rich and have 
a large user base, but their footprints are too large for most embedded space applications. Finally, most commercial 
real-time operating systems are cumbersome and contain far more functionality than is actually used. Therefore the 
second approach, to build an operating system to run on a soft processor, seems ideal for space vehicles because it 
allows for more easily built hardware interaction than the other two approaches.  

The details of designing real-time operating systems for an embedded platform, such as a soft processor are well 
known29 and need not be reviewed here. However, it is worth noting some basic principles for building such an 
operating system for hard, embedded applications. 

 
1) Interrupt driven scheduling mechanisms for embedded real-time systems can be round robin, preemptive, or 
both. But for the most responsive and flexible system, both round robin and preemptive should be provided (e.g. 
tasks at same priority execute in round robin fashion). For adaptive purposes, the scheduling discipline should be 
such that it may be changed at any time.  
2) Supported communications mechanisms should include semaphores and message queues, dynamic memory 
allocation (e.g. program overlaying), semaphores and message queues, and mailboxes.  
3) Dynamic prioritization should be supported to deal with changing mission requirements, which can be 
handled by adjusting a register in the interrupt controller. 
4) Multiple timers and external device interrupts should be supported.  
5) The Priority Ceiling Protocol should be supported to prevent priority inversion and deadlocks.  
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6) A small footprint for the operating system should be sought. 
 
This is by no means an exhaustive list, but is provided as an example of the principles to be embodied. 

VII. � Conclusions 
In this paper, an overview of issues and history of fault-tolerant design for reconfigurable computing using 

FPGAs for space vehicles was given. From lessons learned from past space missions, architectural requirements for 
an adaptive hardware and software system were given. These recommendations incorporate a reconfigurable 
hardware platform based on the FPGA, SEU protection mechanisms, a fault-tolerant bus structure, and a mission 
driven reconfiguration scheme. 

The proposed architecture does not require redundancy, and therefore is space, power, and time efficient. 
Alternatively, this architecture can be used to reconfigure a non-critical subsystem to take over for a more critical 
one; provided that they can communicate over a common bus structure and all input and output signals are available. 
Moreover, the recommended scheme can be used both as a survivability strategy and as a mission optimization 
strategy – only those mission components that are needed are configured at a given mission stage. This self-adaptive 
approach is useful not only in space missions but in terrestrial applications where nuclear events can create SEU-like 
effects. 

Significant work needs to be done in further exploring adaptive operating systems that can make use of the 
reconfigurable hardware in ways that go beyond traditional operating systems protections. These areas of research 
have been mentioned previously. Moreover, though the fault-tolerance afforded by soft computing techniques and 
traditional distributed computing protection schemes have only been mentioned in passing here, they provide 
additional techniques that can and must be incorporated into any overall reconfigurable and survivable architecture. 

Moreover, this paper has focused on the operation of one configurable subsystem. It has been suggested, 
however, that cooperation among multiple reconfigurable systems is needed to provide additional fault-tolerance 
and load sharing between critical and non-critical systems. Finally, further work in this area should be aimed at 
developing and testing prototypes of the proposed architecture under simulated operational conditions prior to 
deployment in unmanned vehicles, and eventually, manned space vehicles. 
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